Asteroid mining

Asteroid mining is the exploitation of raw materials from asteroids and other minor planets, including near-Earth objects.



Minerals can be mined from an asteroid or spent comet then used in space for construction materials or taken back to Earth.These include gold, iridium, silver, osmium, palladium, platinum, rhenium, rhodium, ruthenium and tungsten for transport back to Earth; iron, cobalt, manganese, molybdenum, nickel, aluminum, and titanium for construction.


Asteroid mining


Due to the high launch and transportation costs of spaceflight, inaccurate identification of asteroids suitable for mining, and in-situ ore extraction challenges, terrestrial mining remains the only means of raw mineral acquisition today. If space program funding, either public or private, dramatically increases, this situation is likely to change in the future as resources on Earth are becoming increasingly scarce and the full potentials of asteroid mining—and space exploration in general—are researched in greater detail. However, it is yet uncertain whether asteroid mining will develop to attain the volume and composition needed in due time to fully compensate for dwindling terrestrial reserves.


Asteroid mining



Purpose

     Based on known terrestrial reserves, and growing consumption in both developed and developing countries, key elements needed for modern industry and food production could be exhausted on Earth within 50–60 years. These include phosphorus, antimony, zinc, tin, lead, indium, silver, gold and copper. In response, it has been suggested that platinum, cobalt and other valuable elements from asteroids may be mined and sent to Earth for profit, used to build solar-power satellites and space habitats, and water processed from ice to refuel orbiting propellant depots.


Asteroid mining



    Although asteroids and Earth accreted from the same starting materials, Earth's relatively stronger gravity pulled all heavy siderophilic (iron-loving) elements into its core during its molten youth more than four billion years ago. This left the crust depleted of such valuable elements until a rain of asteroid impacts re-infused the depleted crust with metals like gold, cobalt, iron, manganese, molybdenum, nickel, osmium, palladium, platinum, rhenium, rhodium, ruthenium and tungsten (some flow from core to surface does occur, e.g. at the Bushveld Igneous Complex, a famously rich source of platinum-group metals). Today, these metals are mined from Earth's crust, and they are essential for economic and technological progress. Hence, the geologic history of Earth may very well set the stage for a future of asteroid mining.


No comments:

Post a comment

Please do not enter any spam link in the comment box

Featured

Artificial Intelligence

Artificial Intelligence Best Definition :-  The simulation of intelligent behavior of computer. In simple words as the name sug...

INSTAGRAM FEED

@soratemplates